Analysis of HMM-Based Lombard Speech Synthesis
نویسندگان
چکیده
Humans modify their voice in interfering noise in order to maintain the intelligibility of their speech – this is called the Lombard effect. This ability, however, has not been extensively modeled in speech synthesis. Here we compare several methods of synthesizing speech in noise using a physiologically based statistical speech synthesis system (GlottHMM). The results show that in a realistic street noise situation the synthetic Lombard speech is judged by listeners both as appropriate for the situation and as intelligible as natural Lombard speech. Of the different types of models, one using adaptation and extrapolation performed the best.
منابع مشابه
Speech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملSynthesis of stressed speech from isolated neutral speech using HMM-based models
In this study, a novel approach is proposed for modeling speech parameter variations between neutral and stressed conditions and employed in a technique for stressed speech synthesis. The proposed method consists of modeling the variations in pitch contour, voiced speech duration, and average spectral structure using Hidden Markov Models (HMMs). While HMMs have traditionally been used for recog...
متن کاملMel cepstral coefficient modification based on the Glimpse Proportion measure for improving the intelligibility of HMM-generated synthetic speech in noise
We propose a method that modifies the Mel cepstral coefficients of HMM-generated synthetic speech in order to increase the intelligibility of the generated speech when heard by a listener in the presence of a known noise. This method is based on an approximation we previously proposed for the Glimpse Proportion measure. Here we show how to update the Mel cepstral coefficients using this measure...
متن کاملEvaluating speech intelligibility enhancement for HMM-based synthetic speech in noise
It is possible to increase the intelligibility of speech in noise by enhancing the clean speech signal. In this paper we demonstrate the effects of modifying the spectral envelope of synthetic speech according to the environmental noise. To achieve this, we modify Mel cepstral coefficients according to an intelligibility measure that accounts for glimpses of speech in noise: the Glimpse Proport...
متن کاملIntelligibility enhancement of HMM-generated speech in additive noise by modifying Mel cepstral coefficients to increase the glimpse proportion
This paper describes speech intelligibility enhancement for Hidden Markov Model (HMM) generated synthetic speech in noise. e present a method for modifying the Mel cepstral coefficients generated by statistical parametric models that have been trained n plain speech. We update these coefficients such that the glimpse proportion – an objective measure of the intelligibility of speech n noise – i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011